Збирови квадрата

vreme memorija ulaz izlaz
1 s 64 Mb standardni izlaz standardni ulaz

Поређајмо све парове природних бројева \((a, b)\), где је \(0 \leq a \leq b\) редом, у односу на вредност збира њихових квадрата (ако два пара имају исту вредност збира квадрата, онда их ређамо редом, у односу на вредност првог броја \(a\)). Та серија елемената почиње овако:

\[\begin{eqnarray*} 0^2 + 0^2 &=& 0\\ 0^2 + 1^2 &=& 1\\ 1^2 + 1^2 &=& 2\\ 0^2 + 2^2 &=& 4\\ 1^2 + 2^2 &=& 5\\ 2^2 + 2^2 &=& 8\\ \ldots \end{eqnarray*}\]

Неки елементи серије се понављају (на пример, \(0^2 + 5^2 = 25\), \(3^2 + 4^2 = 25\)).

Напиши програм који одређује \(k\)-ти члан те серије (бројање почиње од 0).

Улаз

Са стандардног улаза се учитава број \(n\) (\(1 \leq n \leq 10^4\)), такав да се разматрају само парови \((a, b)\) за које је \(0 \leq a \leq b \leq n\), а затим из наредног реда број \(k\) (он је већи или једнак од \(0\), а строго мањи од броја елемената листе).

Излаз

На стандардни излаз исписати елемент описане серије збирова квадрата на позицији \(k\) (позиције се броје од нуле) – исписати бројеве \(a\), \(b\) и \(a^2 + b^2\), раздвојене једним размаком.

Пример 1

Улаз

2 5

Излаз

2 2 8

Пример 2

Улаз

10 15

Излаз

1 5 26

Morate biti ulogovani kako biste poslali zadatak na evaluaciju.